Servo Linear Actuator Design In AGV/AMR

Designing a servo linear actuator for AGVs (Automated Guided Vehicles) or AMRs (Autonomous Mobile Robots) involves considerations like precision, compactness, efficiency, and dynamic control. Below is a structured approach to designing such an actuator.

 

1. Key Requirements for AGV/AMR Linear Actuators


Functional Needs
• Load Capacity (e.g., 50–500 kg for lifting/tilting mechanisms).
• Stroke Length (typically 100–500 mm for AGV applications).
• Speed & Acceleration (e.g., 30–200 mm/s for smooth operation).
• Precision (±0.1 mm or better for alignment tasks).
• Duty Cycle (continuous or intermittent operation).
• Environmental & Operational Constraints
• Compact & Lightweight (to fit within AGV/AMR footprint).
• Low Power Consumption (battery-powered efficiency).
• Dust/Water Resistance (IP54 or higher for industrial environments).
• Low Noise & Vibration (for collaborative robot applications).

 

2. Servo Linear Actuator Selection
Actuator Types

Type

Pros

Cons

Best For

Ball Screw

High precision, high load

Slower speed, higher cost

Lifting, precise positioning

Lead Screw

Lower cost, self-locking

Lower efficiency, wear over time

Light-duty applications

Belt-Driven

High speed, low maintenance

Lower force, less precise

Conveyor adjustments

Linear Motor

Ultra-fast, direct drive

Expensive, complex control

High-speed sorting

 

For AGV/AMR applications, a ball screw or compact servo linear actuator is most common.

Servo Linear Actuator Design In AGV/AMR

 

3. Motor Selection (Servo vs. Stepper)

Parameter

Servo Motor

Stepper Motor

Precision

Very high (closed-loop)

Good (open-loop, may lose steps)

Speed

High (3000+ RPM)

Moderate (1000 RPM typical)

Torque

High at high speeds

Drops at higher speeds

Control

Complex (needs encoder)

Simple (pulse/direction)

Cost

Higher

Lower

 

Recommendation:
Servo motor (for high precision, dynamic control).
Stepper motor (for cost-sensitive, low-speed applications).

 

4. Mechanical Design Considerations


A. Frame & Mounting
Aluminum profile (lightweight, rigid).
Linear guides (for smooth motion, e.g., THK/HIWIN rails).
Compact housing (to fit within AGV structure).

 

Servo Linear Actuator Design In AGV/AMR


B. Force & Torque Calculation
Force (N)=2π×Torque (Nm)×Efficiency/Lead (m/rev)

 

Example:
Motor torque = 5 Nm
Ball screw lead = 10 mm (0.01 m)
Efficiency = 90%
Force = 2π×5×0.9/0.01​≈2827N (~288 kg)


C. Speed & RPM


Linear Speed (mm/s)=RPM×Lead (mm/rev)/60
Example:
1500 RPM motor, 10 mm lead → 250 mm/s

 

5. Control & Feedback System


A. Motion Controller
PLC (for industrial AGVs).
Embedded Controller (ROS-based AMRs).
Servo Drive (for precise positioning).
B. Sensors
Encoder (for servo motor feedback).
Limit Switches (for stroke end detection).
Force Sensor (if precise force control is needed).
C. Communication Protocol
CANopen (common in industrial AGVs).
EtherCAT (for high-speed control).
Modbus RTU/TCP (for simpler setups).

 

6. Integration with AGV/AMR


Typical Applications
Lifting Mechanism (for pallet handling).
Tilting Platform (for dumping loads).
Conveyor Adjustment (for loading/unloading).
Precision Alignment (for docking).

 

Power Supply
24V/48V DC (standard for AGVs).
Battery Management (low-power modes for energy savings).

 

7. Example Design


Specifications
Load: 200 kg
Stroke: 300 mm
Speed: 50 mm/s
Precision: ±0.05 mm


Components
Actuator: Ball screw (10 mm lead).

Motor: 400W servo motor (3 Nm, 3000 RPM).
Controller: EtherCAT servo drive + PLC.
Sensors: Absolute encoder + limit switches.

 

8. Advantages of Servo Linear Actuators in AGVs/AMRs


✔ High precision (for accurate docking).
✔ Energy-efficient (vs. pneumatics/hydraulics).
✔ Programmable (adaptive speed/force profiles).
✔ Low maintenance (no lubrication needed).

 

9. Challenges & Solutions

Challenge

Solution

High cost

Use stepper motors for simpler tasks

Heat buildup

Select high-efficiency ball screws

Battery drain

Implement regenerative braking

Vibration

Use dampers or low-backlash couplings

 

Conclusion


For AGV/AMR applications, a servo-driven ball screw linear actuator is ideal for precision, efficiency, and reliability. Key steps include:
• Define load, speed, and stroke requirements.
• Select motor type (servo/stepper) and drive mechanism.
• Integrate with motion control & feedback systems.
• Ensure compact, lightweight, and robust construction.


Would you like help with specific component selection (e.g., motor model, screw size) or CAD integration? Share your AGV project request with us.

  • wechat

    PJM Service: motoractuator

Chat with Us